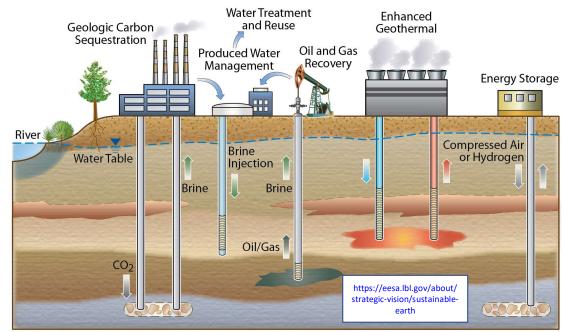


GET-SET: Geo-storage in the Energy Transition: Science, Engineering, Technology

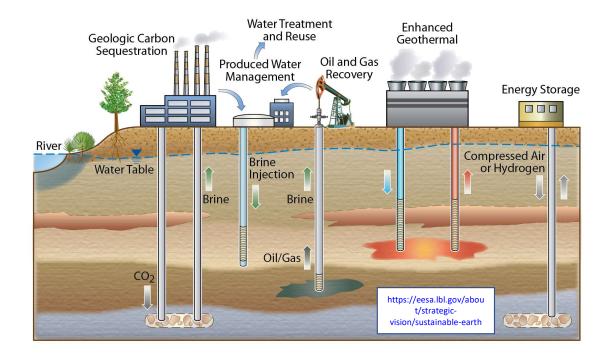
Dr Kara English, Assistant Professor, Sustainable GeoEnergy Group, UCD School of Earth Science

Kara.English@ucd.ie


https://www.ucd.ie/earthsciences/research/sustainablegeoenergy

- **G** eo-storage in the
- E nergy
- **T** ransition
- S cience, E ngineering, T echnology

Newly formed Sustainable GeoEnergy Group in UCD



https://eesa.lbl.gov/about/strategic-vision/sustainable-earth/

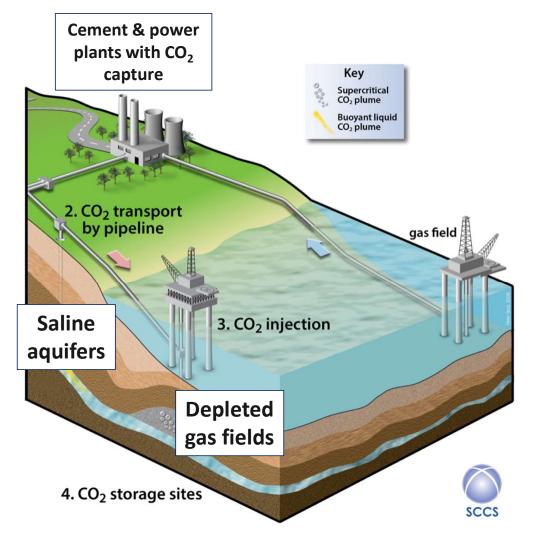
Characterization of the potential for subsurface geological storage

- GeoStorage Applications in Ireland
- Carbon capture and storage (CCS)
- Hydrogen storage
- Alternative energy storage options
 - Compressed air energy storage (CAES)
 - Aquifer thermal energy storage (ATES)

RESEARCH IN APPLIED

 CCS to help reach net-zero targets of Paris Agreement
 GeoEnergy storage to minimise waste and balance intermittency of Ireland's sustainable wind energy resource

- GeoStorage Applications in Ireland
- Carbon capture and storage (CCS)
- Hydrogen storage
- Alternative energy storage options
 - Compressed air energy storage (CAES)
 - Aquifer thermal energy storage (ATES)


Focus of talk on CCS but synergies exist in subsurface characterization required for the various applications

What is Carbon Capture & Storage (CCS)

- Capture of CO₂ emitted from point sources: power plants (coal, gas fired) or industrial processes (e.g. cement, alumina)
- Transport of the captured and compressed
 CO₂ (usually in pipelines)
- Underground injection and geologic storage of the CO₂ into deep underground rock formations

Why consider CCS in Ireland ?

Models require **significant use of CCS technology** to limiting global warming to 1.5°C (IPCC, 2021). IDCC

In Ireland, CCS could be used with:

- (1) Gas powered electricity generation reliable low– emissions electricity
- (2) Decarbonise heavy industry (e.g. cement)
- (3) Deliver negative emissions
 - Bioenergy with CCS (BECCS)
 - Direct air capture with CCS (DACCS) •

(4) Facilitate production of low-carbon blue-hydrogen

POLICY DEVELOPMENTS

The unprecedented European Green Deal and Climate law converting the political commitment to climate neutrality into a legal obligation, has led to the development of additional EU policy supportive of CCS.

FU Innovation Fund

Calls for CCS in Ireland

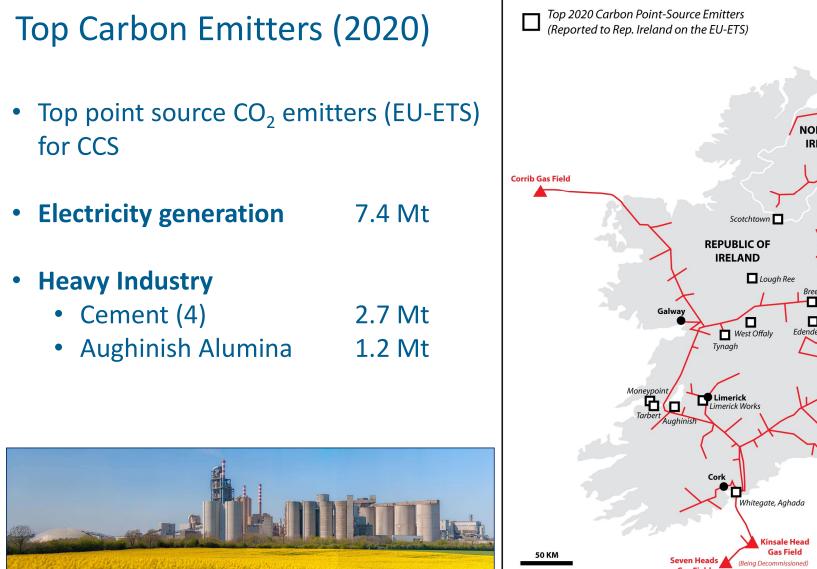
Models with CCS required with CCGT power plants, becoming operation in 2031-2040

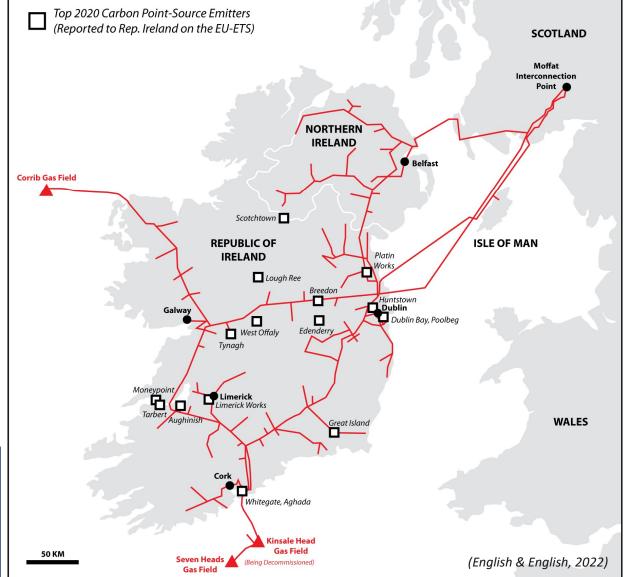
States CCS required to decarbonize cement manufacturing, oil refining, incineration

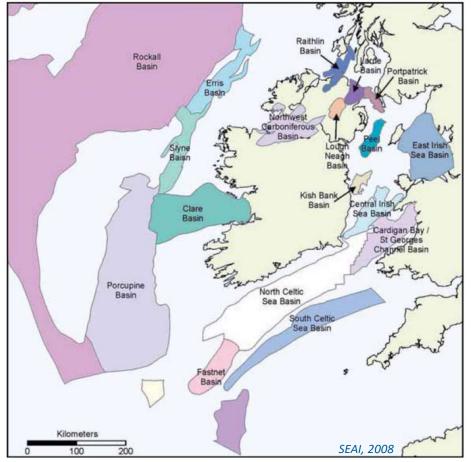
Climate Action Plan 2021

An Roinn Comhshaoil, Aeráide agus Cumarsáide Department of the Environment, Climate and Communications

CCS Deployment in industrial sector will help achieve 51% reduction in emissions (CCS retrofit 2 out of 4 cement plants)



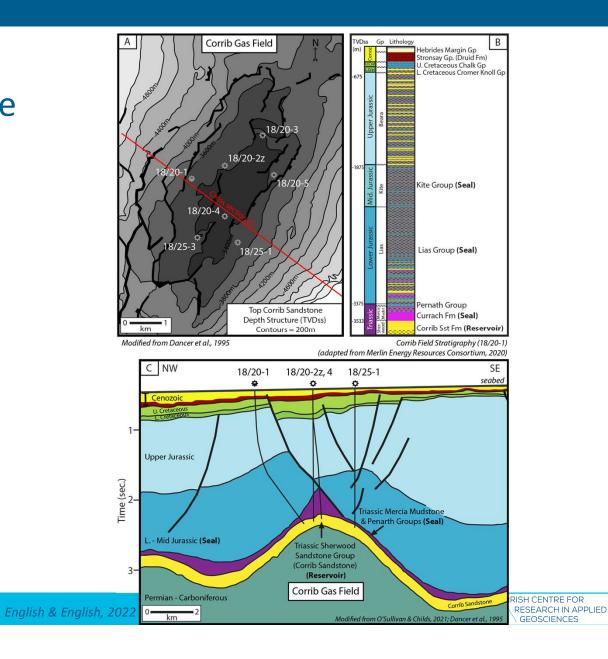

Negative Emissions Technologies: CCS with bioenergy and direct air removal has the greatest potential scale and permanence


CCS, with the correct pricing incentives, could be an attractive option for the island of Ireland **Policy framework and roadmap** to be developed for CCS

Industrial CCUS deployment to reach net zero by 2050 in heating/cooling sector

Ireland's Potential for Offshore CO₂ Storage

- Previous scoping studies have identified CO₂ storage potential in the Irish offshore (e.g. Lewis et al., 2009)
 - Celtic Sea Basins
 - Depleted gas field (Kinsale Head)
 - 321 Mt storage capacity (English & English, 2022)
- West of Ireland Basins
 - Producing gas field (Corrib)
 - 44 Mt storage capacity (English & English, 2022)
 - Additional potential in saline aquifers of Slyne Basin


RESEARCH IN APPL

- Also, alternative energy storage potential
 - Including Irish Sea (i.e. proximity to Dublin)

Objective: Characterize Ireland's Geostorage

GET - SET

Capacity
Injectivity
Seal Integrity

Objective: Characterize Ireland's Geostorage => Subsurface models required for resource & risk assessment

Capacity

- Structural Mapping
- Stratigraphic analysis of storage complex
- Reservoir Characterization
- Pressure & Temperature
- Aquifer Hydrodynamics
- Volumetric estimates

Injectivity

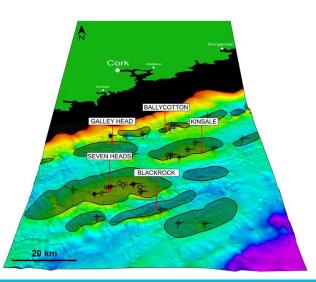
- Static Model
- Dynamic Models (Field)
- Injectivity at Wells
- Well Placement
- Phase Behaviour of CO₂
- Mineral Reactions
- CO₂ Flow over Time
- Volumetric estimates

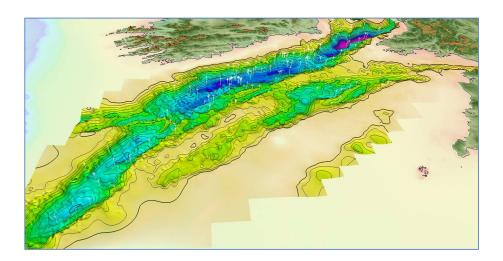
Seal Integrity

- Limits to Reduce Risk of:
 - Induced Fracturing
 - Seal Breach & Leakage
 - Fault Reactivation
- Secondary Seal Systems

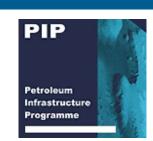
Objective: Characterize Ireland's Geostorage Ongoing Post-Doc Projects Currently Progressing iCRAG 2

Srikumar Roy


Scoping of structural CO₂ storage potential in the Celtic Sea Basin


Pablo Rodriguez-Salgado

CO₂ Hydrate sealing potential for CCS, HydSeal


Impact of fault geometry on predictions of fault reactivation

Janis Aleksans

- Geo-storage in the Energy Transition: Science, Engineering, Technology
- GeoStorage Applications in Ireland: CCS, Hydrogen, Energy Storage
- Objective: Characterize Ireland's Geo-Storage Potential
- Multi-Year Research Project currently in Scoping Phase
- Feedback & Expressions of Interest welcome (<u>Kara.English@ucd.ie</u>)

https://www.ucd.ie/earthsciences/research/sustainablegeoenergy